Nanoparticle Solar Cells

Instructor: Dr. Das ECG 653 Term Presentation By Sandeep Sangaraju

Outline

- Introduction
- > Principle Behind
- Generations of solar cells
- > Why Nanoparticles?
- >How DSSC works
- Comparison between DSSC and Traditional silicon-based solar cell
- Comparison of Efficiencies
- Conclusion

Introduction

> Why Solar?

- More solar energy is absorbed by the earth every minute than is used in fossil fuels every year.
- Pollution free and wastes/emissions are easily manageable.
- Effective in providing electricity to remote locations where other forms of energy are difficult or expensive to get.

> What is solar cell?

- Solar cells convert sunlight directly into electricity.
- Made of semiconducting materials [usually silicon].
- First used in spacecraft and satellites.
- Traditional types are based on two types of silicon sandwiched together (n-type and p-type).
- Based on using photons to separate charges: electron-hole pairs.
 Many new types are in research/production stage.

Introduction

- Solar cells respond differently to the different wavelengths, or colors of light.
- Each wavelength corresponds to a frequency and an energy: the shorter the wavelength, the higher the frequency and the greater the energy.
- Red light is at the low-energy end of the visible spectrum and violet light is at the highenergy end.
- Light that is too high or low in energy is not usable by a cell to produce electricity. Rather, it is transformed into heat.
- So solar cell mostly observe visible light to produce electricity.

Principle Behind

- When Photons with energy equivalent to band gap falls on semiconducting material, the electrons are released from their atoms, allowing the electrons to flow through the material to produce electricity.
- This process of converting light (photons) to electricity (voltage) is called the photovoltaic effect.

Generations of Solar Cells

First Generation

- Consist of large-area, high quality and single junction devices.
- Involve high energy and labour inputs making these very costly.
- Example: Crystalline Silicon solar cells

• Efficiency- 33%

Second Generation

- Consist of Thin film cells.
- Techniques such as vapor deposition and electroplating are advantageous.
- Developed to reduce production costs.
- Examples: CdTe, Thin film silicon, CIGS
- Efficiency reduces 13%

Generations of Solar Cells

> Third Generation

- Aim to enhance poor electrical performance of second generation while maintaining very low production costs.
- Techniques involved are: Dye-sensitized solar cells (DSSC).

Efficiency- 40.8%

Why Nanoparticles?

- > High surface area
- Change in the size of nanoparticles makes solar cells to observe most of visible light, resulting high output voltage.
- For High Efficiency
- > For smaller size and light weight solar cells.

Nanoparticle DSC

How DSSC works

- A photon is absorbed by the dye and excites an electron in the dye.
- The electron is then "injected" into the wires or particles.
- Travels to the electrode, which is connected to an external circuit.
- The dye is regenerated by the electrolyte

Comparison between DSSC and traditional silicon-based solar cell

> Advantages

Disadvantages

- Low cost materials
- No elaborate apparatus
- Works in low light conditions
- High price/performance ratio

- Slightly lower efficiencies
- Breakdown of the dye
- Bandgap slightly larger than silicon
- Liquid electrolyte can leak

Silicon Nanoparticle SC

- > Can be considered also as 3rd generation solar cell.
- Most efficient till date 60%
- Developed using Thin film deposition of Silicon Nanoparticle on the polycrystalline silicon substrate of a photovoltaic (solar) cell.

Comparison of Efficiencies

Conclusion

Nanoparticle solar cells are most promising material in future.

Due to their low cost and high efficiency these can be used in applications varying from Satellites to Cell phones.